55,377 research outputs found

    Dilaton Stabilization in Brane Gas Cosmology

    Full text link
    Brane Gas Cosmology is an M-theory motivated attempt to reconcile aspects of the standard cosmology based on Einstein's theory of general relativity. Dilaton gravity, when incorporating winding p-brane states, has verified the Brandenberger--Vafa mechanism --a string-motivated conjecture which explains why only three of the nine spatial dimensions predicted by string theory grow large. Further investigation of this mechanism has argued for a hierarchy of subspaces, and has shown the internal directions to be stable to initial perturbations. These results, however, are dependent on a rolling dilaton, or varying strength of Newton's gravitational constant. In these proceedings we show that it is not possible to stabilize the dilaton and maintain the stability of the internal directions within the standard Brane Gas Cosmology setup.Comment: 6 pages, no figures. To appear in the Proceedings of MRST 2004, held at Concordia University, Montreal, QC, 12-14 May 200

    Prosody and melody in vowel disorder

    Get PDF
    The paper explores the syllabic and segmental dimensions of phonological vowel disorder. The independence of the two dimensions is illustrated by the case study of an English-speaking child presenting with an impairment which can be shown to have a specifically syllabic basis. His production of adult long vowels displays three main patterns of deviance - shortening, bisyllabification and the hardening of a target off-glide to a stop. Viewed phonemically, these patterns appear as unconnected substitutions and distortions. Viewed syllabically, however, they can be traced to a single underlying deficit, namely a failure to secure the complex nuclear structure necessary for the coding of vowel length contrasts

    Evidence for risk of bias in cluster randomised trials: review of recent trials published in three general medical journals

    Get PDF
    Objective To examine the prevalence of a risk of bias associated with the design and conduct of cluster randomised controlled trials among a sample of recently published studies. Design Retrospective review of cluster randomised trials published in the BMJ, Lancet, and New England Journal of Medicine from January 1997 to October 2002. Main outcome measures Prevalence of secure randomisation of clusters, identification of participants before randomisation (to avoid foreknowledge of allocation), differential recruitment between treatment arms, differential application of inclusion and exclusion criteria, and differential attrition. Results Of the 36 trials identified, 24 were published in the BMJ, I I in the Lancet, and a single trial in the New England journal of Medicine. At the cluster level, 15 (42%) trials provided evidence for secure allocation and 25 (69%) used stratified allocation. Few trials showed evidence of imbalance at the cluster level. However, some evidence of susceptibility to risk of bias at the individual level existed in 14 (39%) studies. Conclusions Some recently published cluster randomised trials may not have taken adequate precautions to guard against threats to the internal validity of their design

    Moduli Stabilization with the String Higgs Effect

    Get PDF
    We review the notion of the Higgs effect in the context of string theory. We find that by including this effect in time dependent backgrounds, one is led to a natural mechanism for stabilizing moduli at points of enhanced gauge symmetry. We consider this mechanism for the case of the radion (size of the extra dimensions) and find that as decompactification of the large spatial dimensions takes place the radion will remain stabilized at the self dual radius. We discuss how this mechanism can be incorporated into models of string cosmology and brane inflation to resolve some outstanding problems. We also address some issues regarding which string states should be included when constructing low energy actions in string cosmology.Comment: 20 pages, references added, typos correcte

    Dynamical decompactification from brane gases in eleven-dimensional supergravity

    Full text link
    Brane gas cosmology provides a dynamical decompactification mechanism that could account for the number of spacetime dimensions we observe today. In this work we discuss this scenario taking into account the full bosonic sector of eleven-dimensional supergravity. We find new cosmological solutions that can dynamically explain the existence of three large spatial dimensions characterised by an universal asymptotic scaling behaviour and a large number of initially unwrapped dimensions. This type of solutions enlarge the possible initial conditions of the Universe in the Hagedorn phase and consequently can potentially increase the probability of dynamical decompactification from anisotropically wrapped backgrounds.Comment: 8 figures, JHEP3 styl
    corecore